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Which perturbations can lead to the most 
efficient growth? 

•  In stable systems, perturbations can 
grow significantly before eventually 
decaying due to the interaction of 
several non-orthogonal modes (e.g., 
Farrell 1988, Trefethen 1993) 

•    Optimal initial conditions = singular 
vectors  fastest growing perturbations 
leading to an amplification of a given 
quantity (e.g., Buizza & Palmer 1995) 

Growth Decay 

•    Relevance =  e.g., climate stability & variability, sensitivity, 
predictability and error growth, building an observational 
system (e.g., Marotzke et al 1999, Moore & Kleeman 1999, Moore et al 2004)  



Objectives  

•  Spatial structure of the optimal initial conditions leading to 
the maximum growth of the physical quantities: heat flux, 
MOC, tropical SST, kinetic & available potential energy, …  

•  Identification of the growth mechanism for the perturbations 
& implications for stability and variability of ocean & climate  

•    Can observed ocean variability be explained as small
 amplitude damped linear dynamics excited by atmospheric &
 other stochastic forcing via non-normal growth?  



Stable linear system  

If  A is non-normal 
then eigenvectors       are not orthogonal  
 may lead to transient amplification  

(2D) solution at time    : 

Transient Amplification 

(e.g. Farrell, 1988, Trefethen, 1993) 

Transient amplification: Interaction of non 
orthogonal eigenmodes b/c of 

(1)  Partial initial cancellation 
(2)  Different decay rates 



Evaluating the Optimal Initial Conditions: 
Eigenvalue Problem 

•  Full nonlinear model linearized about steady state  

•  Maximize MOC or SST anomalies at  time         to find 
optimal initial conditions  

•  Equivalent to a generalized eigenproblem for optimal initial 
conditions 
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most fluid dynamical 
systems are non-normal 



Tangent Linear Model 

Estimate Norm 
Kernel X 
reflecting the 
quantity to maximize 

Adjoint 

Arpack: Implicit 
Restarted Arnoldi 
Iteration 

Methodology: Optimals using the MITgcm 
Finding optimal initial conditions         Solving for eigenvectors       
& eigenvalues     of the generalized eigenproblem   

Initial  
conditions 

Nonlinear Model 
Steady State 
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MITgcm: Mean State 
•  Primitive, hydrostatic, 

incompressible, Boussinesq 
eqns on a sphere 

(e.g., Marshall et al. 1997; http://mitgcm.org) 

•    Configuration: rectangular 
double-hemisphere ocean 
basin, coarse resolution 3°x3°, 
15 vertical levels, flat 
topography 

•    Convection=Implicit 
diffusion 

Surface (u,v)       SST  

•   Annual mean forcing 

•   Mixed boundary conditions 

MOC 



Stability of the Tangent Linear Model 

TLM least damped mode with 
decay time of 800 yrs 

TLM/ADM Imag. vs Real eig. values for 
t=2 yrs 
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Transient growth of MOC anomalies:  
preliminary results (Zanna et al, in prep) 

•  MOC stability & variability: salinity 
advective feedback, from interannual 
to multidecadal, NAO-gyre interaction 
(e.g, Marotzke 1990, Marshall et al 2001) 

•  Few studies on transient amplification 
of MOC (e.g., Lohman & Schneider 1999, Zanna & 
Tziperman 2005, Sevellec et al 2008) 

•   Results: Optimal i.c of T & S lead 
to growth of MOC anomalies after ~8 
yrs associated with non-orthogonal 
oscillatory modes. Growth factor ~8. 

MOC 

Cost funtion as fct of time when 
initializing TLM with optimals 

•  Cost function: sum of the square of 
the MOC anomalies 50N-60N, 
1000m-3500m (Bugnion & Hill 2006) 



•  Signal mostly in NH with baroclinic structure 

•  Strong signal in the deep ocean with additive contribution 
of T & S to buoyancy 

•  T & S necessary for growth (unlike Marotzke 1990; Sevellec et al 2008) 

•  Similarities with unstable oscillatory mode under fixed flux 
of Raa & Dijkstra (2002) 

Density cross-section x-z @ 60N 
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Transient growth of MOC anomalies: 
Initial conditions 



Growth Mechanism:  
Preliminary & simplified results 

•  Several decaying oscillatory modes under mixed boundary 
conditions but no growth of individual modes  

•  Growth = change of APE due advection of density 
perturbations by the mean flow creating N-S & E-W 
buoyancy gradient  

•  Oscillation = phase difference btw the N-S & E-W 
buoyancy gradients 

MOC @ 2months MOC @ 7.5 yrs MOC @ 23 yrs 



Exciting Tropical SST anomalies 
•  Tropical Atlantic Variability mechanisms  

 air-sea interaction or connected to 
seasonal cycle (e.g., Chang, Xie & Carton, Jochum et al) 

•  Cost function: sum of the square of the 
SST anomalies btw 15S & 15 N  

•  Optimal i.c.= deep salinity anomalies near 
the western boundary @ 30N/S & 50 N/S 

•   Results: Optimal growth of tropical 
SST anomalies after 3.5-4 yrs. Initial 
0.1 ppt  0.4 C. 

SST  

Sum of squares of Tropical 
SST anomalies as fct of time 

•   Mechanism: geostrophic 
adjustment  Coastal & Equatorial 
Kelvin waves (Zanna et al, submitted to JPO)  



•  Small perturbations  Large amplification on
 interannual timescales without unstable modes 

•  Identification of new mechanisms leading to growth of
 perturbations  

•  Preferred anomalies located in the deep ocean: 

•  Non-normal dynamics can possibly play a dominant
 role in generating variability on interannual timescales
 if excited by stochastic forcing 

Conclusions 

… 



Conclusions 
•  From Box models to GCMs:  

–  non-normality of the propagator mainly due to advection & 
surface boundary conditions 

–  Faster time scales in 3D (<10yrs) than in 2D models (decades) 
–  More complex dynamics in full GCM & possibility to explore 

different physical quantities: MOC, energy, heat flux, etc 

•  Idealized MITgcm: 
–  Eigenvectors of the TLM &  
–  Singular vectors for different physical quantities (in //) 

•  Challenges:  
–  Calculations are relatively expensive for higher resolutions 
–  Bathymetry:  strong sensitivity in shallow areas 
–  Atmosphere (non-normality increases when introducing atmospheric 

coupling) 


